

VI Semester B.Sc. Examination, May 2017

(Fresh + Repeaters)

(CBCS - Fresh - 2016 - 17 & Onwards/NS - Repeaters - 2013 - 14

& Onwards)

PHYSICS - VIII

Atmospheric Physics, Electronics and Computational Physics

Time: 3 Hours

Max. Marks: 70

Instruction: Answer five questions from each Part.

## PART-A

Answer any five of the following questions. Each question carries eight marks.

(5×8=40)

- 1. a) Explain "Relative humidity and Absolute humidity".
  - b) What is hydrostatic balance? Derive hydrostatic equation. (4+4)
- 2. a) Define:
  - i) Absorptivity and
  - ii) Emissivity of earth's atmosphere.
  - b) Derive Beer's law. (2+6)
- 3. a) What is green house effect?
  - b) Derive an expression for pressure gradient force per unit mass in the atmosphere. (2+6)
- 4. a) What is an operational amplifier? Mention any two characteristics of an ideal op-amp.
  - b) Derive an expression for voltage gain of a non-inverting amplifier using op-amp. (4+4)
- 5. a) What is feedback? State Barkhausen's conditions for sustained oscillations.
  - b) Describe the working of Wien bridge oscillator with a diagram using op-amp and write it's frequency of oscillation. (3+5)

P.T.O.



- 6. a) Explain:
  - i) NAND gate and
  - ii) X OR gate, with their symbols and truth tables.
  - b) What is half subtracter? Give it's logic circuit and truth table.

(4+4)

- 7. a) What is algorithm?
  - b) Define:
    - i) Round-off error and
    - ii) True error.
  - c) Write a C-program to solve linear equation ax + b = c.

(1+2+5)

- 8. a) Derive Newton backward difference formula using Taylor's series expansion.
  - b) Write the algorithm to evaluate  $I = \int_{3}^{6} f(x) dx$  using Simpson's  $\frac{3}{8}$  rule. (3+5)

PART-B

Solve any five of the following problems. Each problem carries four marks. (5×4=20)

- 9. The saturation vapour pressure at 20°C is 4.6 mb at a place with atmospheric pressure of 1500 mb. The vapour pressure was measured to be 1.2 mb. Calculate the relative humidity at that place.
- 10. A rocket of mass 5000 kg is fired vertically upwards from a place at the equator with a velocity of 1300 ms<sup>-1</sup>. If the angular velocity of the earth is 7.3×10<sup>-5</sup> rad s<sup>-1</sup>, calculate the Coriolis force acting on it.
- Add the following numbers and verify the results by doing addition in decimal number system.

 $(1010)_2$ ,  $(1011)_2$  and  $(1111)_2$ 

12. Calculate the output voltage of a Summer circuit for the following values :

 $R_1$  = 250 K  $_\Omega$  ,  $R_2$  = 500 K  $_\Omega$  ,  $R_3$  = 1M  $_\Omega$  ,  $R_f$  = 1M  $_\Omega$  ,  $V_1$  = - 3V,  $V_2$  = 3V and  $V_3$  = 2V

13. In an RC phase shift oscillator R =  $5000\,\Omega$  and C =  $0.1\,\mu$ F. Calculate the frequency of oscillation.



- 14. Using Newton-Raphson method, find the real root of  $f(x) = x^3 x 1$  correct to 9 decimal places.
- 15. Use the forward, central and backward difference formula to complete the last row of the table.

| X     | 0.4   | 0.5   | 0.6   |
|-------|-------|-------|-------|
| f(x)  | 0.393 | 0.612 | 0.851 |
| f'(x) |       |       |       |

16. Using Euler's method, obtain the solution of y' = x - y with y(0) = 1 at x = 0 (0.2) 0.6.

PART-C

Answer any five of the following questions. Each question carries two marks.

 $(5 \times 2 = 10)$ 

- 17. a) Is water vapour a green house gas? Explain.
  - b) Name the sources of radiation in the atmosphere.
  - c) Why ICs are better compared to discrete circuit technology?
  - d) Name the types of ICs.
  - e) Is 8 an octal number ? Explain.
  - f) What type of feedback is preferred for amplifiers? Explain.
  - g) Is convergence of the bisection method fast? Explain.
  - h) While applying Simpson's  $\frac{1}{3}$  rule, how many intervals must be selected? Explain.